Hardware-Conscious Optimization of the Quantum Toffoli Gate

While quantum computing holds great potential in combinatorial optimization, electronic structure calculation, and number theory, the current era of quantum computing is limited by noisy hardware. Many quantum compilation approaches can mitigate the effects of imperfect hardware by optimizing quantum circuits for objectives such as critical path length. Few approaches consider quantum circuits in terms of the set of vendor-calibrated operations (i.e., native gates) available on target hardware. This manuscript expands the analytical and numerical approaches for optimizing quantum circuits at this abstraction level. We present a procedure for combining the strengths of analytical native gate-level optimization with numerical optimization. Although we focus on optimizing Toffoli gates on the IBMQ native gate set, the methods presented are generalizable to any gate and superconducting qubit architecture. Our optimized Toffoli gate implementation demonstrates an 18% reduction in infidelity compared with the canonical implementation as benchmarked on IBM Jakarta with quantum process tomography. Assuming the inclusion of multi-qubit cross-resonance (MCR) gates in the IBMQ native gate set, we produce Toffoli implementations with only six multi-qubit gates, a 25% reduction from the canonical eight multi-qubit implementations for linearly connected qubits.

Previous
Previous

Infleqtion Unveils Open Beta Release of Superstaq: Accelerating Quantum Computing Performance

Next
Next

SuperSim: Clifford-based Circuit Cutting for Quantum Simulation